Intel ATX Power Supply Design Guide
Version 0.9
Page 10
3.1.4.2.3 Ring Wave, ANSI C62.45-1992
The crest value of the first half peak of the injected oscillatory wave will be 3.0 kV open
circuit, with 200 and 500 A short circuit currents for the common and the normal modes of
transient surge injection, respectively. No unsafe operation is allowed under any condition.
No user-noticeable performance degradation for 1 kV Differential Mode (DM) or 2 kV
Common Mode (CM) is allowed. Automatic or manual recovery is allowed for other
conditions.
3.1.4.2.4 Electrostatic Discharge, IEC801-2/IEC1000-4-2
In addition to IEC 801-2 / IEC1000-4-2, the following ESD tests should be conducted.
Each surface area of the unit under test should be subjected to twenty (20) successive static
discharges, at each of the following voltages: 2 kV, 3 kV, 4 kV, 5 kV, 6 kV, 8 kV, 10 kV,
15 kV, and 25 kV.
Performance criteria:
• All power supply outputs shall continue to operate within the parameters of this design
guide, without glitches or interruption, while the supply is operating as defined and
subjected to 2 kV through 15 kV ESD pulses. The direct ESD event shall not cause any
out-of-regulation conditions such as overshoot or undershoot. The power system shall
withstand these shocks without nuisance trips of the overvoltage protection, overcurrent
protection, or remote +5VDC shutdown circuitry.
• The power supply, while operating as defined, shall not have a component failure when
subjected to any discharge voltages up to and including 25 kV. Component failure is
defined as any malfunction of the power supply that causes component degradation or
failure requiring component replacement to correct the problem.
3.1.4.3 Radiated Immunity
3.1.4.3.1 IEC801-3/IEC 1000-4-3
Frequency Electric Field Strength
27 MHz to 500 MHz, unmodulated 3 V/m
3.1.4.3.2 ENV 50140
Frequency Electric Field Strength
80 to 1000 MHz, 1 kHz sine wave, 80% AM 3 V/m
3.1.4.3.3 Radio Frequency Common Mode, ENV 50141
Frequency Level
.15 to 30 MHz, 1 kHz sine wave, 80% AM 3 V